z-logo
open-access-imgOpen Access
Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins
Author(s) -
Yuya A. Lin,
Omar Boutureira,
Lukas Lercher,
Bhaskar Bhushan,
Robert S. Paton,
Benjamin G. Davis
Publication year - 2013
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja403191g
Subject(s) - chemistry , selenocysteine , metathesis , stereochemistry , combinatorial chemistry , biochemistry , cysteine , organic chemistry , enzyme , polymerization , polymer
Cross-metathesis (CM) has recently emerged as a viable strategy for protein modification. Here, efficient protein CM has been demonstrated through biomimetic chemical access to Se-allyl-selenocysteine (Seac), a metathesis-reactive amino acid substrate, via dehydroalanine. On-protein reaction kinetics reveal a rapid reaction with rate constants of Seac-mediated-CM comparable or superior to off-protein rates of many current bioconjugations. This use of Se-relayed Seac CM on proteins has now enabled reactions with substrates (allyl GlcNAc, N-allyl acetamide) that were previously not possible for the corresponding sulfur analogue. This CM strategy was applied to histone proteins to install a mimic of acetylated lysine (KAc, an epigenetic marker). The resulting synthetic H3 was successfully recognized by antibody that binds natural H3-K9Ac. Moreover, Cope-type selenoxide elimination allowed this putative marker (and function) to be chemically expunged, regenerating an H3 that can be rewritten to complete a chemically enabled "write (CM)-erase (ox)-rewrite (CM)" cycle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom