z-logo
open-access-imgOpen Access
Dissociation or Cyclization: Options for a Triad of Radicals Released from Oxime Carbamates
Author(s) -
Roy T. McBurney,
John C. Walton
Publication year - 2013
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja402833w
Subject(s) - chemistry , radical , oxime , phenanthridine , homolysis , diethylamine , photochemistry , acetophenone , electron paramagnetic resonance , dissociation (chemistry) , medicinal chemistry , photodissociation , dimethylamine , organic chemistry , catalysis , nuclear magnetic resonance , physics
A set of oxime carbamates having N-alkyl and N,N-dialkyl substituents were prepared via carbonyldiimidazole intermediates. It was shown by EPR spectroscopy that they underwent clean homolysis of their N-O bonds upon UV photolysis. During photolysis of acetophenone O-allylcarbamoyl oxime, the corresponding oxazolidin-2-onylmethyl radical was detected by EPR spectroscopy, providing the first evidence that N-monosubstituted carbamoyloxyl radicals can hold their structural integrity. N,N-Disubstituted carbamoyloxyl radicals dissociated rapidly at the lowest accessible temperatures. Above room temperature, both types of oxime carbamate acted as selective new precursors for aminyl and iminyl radicals. Rate parameters were measured for 5-exo cyclization of N-benzyl-N-pent-4-enylaminyl radicals; the rate constant was smaller than for C-centered and O-centered analogues. Oxime carbamates derived from the volatile diethylamine afforded aryliminyl radicals that proved convenient for phenanthridine preparations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom