z-logo
open-access-imgOpen Access
Fluoroketone Inhibition of Ca2+-Independent Phospholipase A2 through Binding Pocket Association Defined by Hydrogen/Deuterium Exchange and Molecular Dynamics
Author(s) -
YuanHao Hsu,
Denis Bucher,
Jian Cao,
Sheng Li,
ShengWei Yang,
George Kokotos,
Virgil L. Woods,
J. Andrew McCammon,
Edward A. Dennis
Publication year - 2012
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja306490g
Subject(s) - chemistry , deuterium , hydrogen–deuterium exchange , binding energy , molecular dynamics , hydrogen , hydrogen bond , molecule , computational chemistry , organic chemistry , atomic physics , physics
The mechanism of inhibition of group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)) by fluoroketone (FK) ligands is examined by a combination of deuterium exchange mass spectrometry (DXMS) and molecular dynamics (MD). Models for iPLA(2) were built by homology with the known structure of patatin and equilibrated by extensive MD simulations. Empty pockets were identified during the simulations and studied for their ability to accommodate FK inhibitors. Ligand docking techniques showed that the potent inhibitor 1,1,1,3-tetrafluoro-7-phenylheptan-2-one (PHFK) forms favorable interactions inside an active-site pocket, where it blocks the entrance of phospholipid substrates. The polar fluoroketone headgroup is stabilized by hydrogen bonds with residues Gly486, Gly487, and Ser519. The nonpolar aliphatic chain and aromatic group are stabilized by hydrophobic contacts with Met544, Val548, Phe549, Leu560, and Ala640. The binding mode is supported by DXMS experiments showing an important decrease of deuteration in the contact regions in the presence of the inhibitor. The discovery of the precise binding mode of FK ligands to the iPLA(2) should greatly improve our ability to design new inhibitors with higher potency and selectivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom