z-logo
open-access-imgOpen Access
Monothiol Glutaredoxins Function in Storing and Transporting [Fe2S2] Clusters Assembled on IscU Scaffold Proteins
Author(s) -
Priyanka Shakamuri,
Bo Zhang,
Michael K. Johnson
Publication year - 2012
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja306061x
Subject(s) - chemistry , azotobacter vinelandii , cluster (spacecraft) , glutaredoxin , iron–sulfur cluster , biochemistry , scaffold protein , biophysics , enzyme , biology , signal transduction , programming language , nitrogenase , glutathione , organic chemistry , nitrogen fixation , computer science , nitrogen
In the bacterial ISC system for iron-sulfur cluster assembly, IscU acts as a primary scaffold protein, and the molecular co-chaperones HscA and HscB specifically interact with IscU to facilitate ATP-driven cluster transfer. In this work, cluster transfer from Azotobacter vinelandii [Fe(2)S(2)](2+) cluster-bound IscU to apo-Grx5, a general purpose monothiol glutaredoxin in A. vinelandii, was monitored by circular dichroism spectroscopy, in the absence and in the presence of HscA/HscB/Mg-ATP. The results indicate a 700-fold enhancement in the rate of [Fe(2)S(2)](2+) cluster transfer in the presence of the co-chaperones and Mg-ATP, yielding a second-order rate constant of 20 000 M(-1) min(-1) at 23 °C. Thus, HscA and HscB are required for efficient ATP-dependent [Fe(2)S(2)](2+) cluster transfer from IscU to Grx5. The results support a role for monothiol Grx's in storing and transporting [Fe(2)S(2)](2+) clusters assembled on IscU and illustrate the limitations of interpreting in vitro cluster transfer studies involving [Fe(2)S(2)]-IscU in the absence of the dedicated HscA/HscB co-chaperone system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom