z-logo
open-access-imgOpen Access
Probing Weak Intermolecular Interactions in Self-Assembled Nanotubes
Author(s) -
Laurent Bouteiller,
Paul van der Schoot
Publication year - 2011
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja210706v
Subject(s) - chemistry , intermolecular force , solvent , chemical physics , angstrom , intermolecular interaction , solvent effects , nanotechnology , thermodynamics , molecule , organic chemistry , crystallography , physics , materials science
Extreme confinement affects the physical properties of fluids, but little quantitative data is available. We report on studies of a bisurea compound that self-assembles into nanotubes to probe solvent confinement on the angstrom scale. By applying a statistical model to calorimetric data obtained on solvent mixtures, we show that the thermodynamic stability of the nanotubes is an extremely sensitive function of the solvent composition because solvent interactions inside and outside of the nanotubes are different. We are able to measure energetic effects as small as 0.01 kT and relate them to the differences in molecular structure of the solvents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom