z-logo
open-access-imgOpen Access
Synthesis of Glycopolymers for Microarray Applications via Ligation of Reducing Sugars to a Poly(acryloyl hydrazide) Scaffold
Author(s) -
Kamil Godula,
Carolyn R. Bertozzi
Publication year - 2010
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja103009d
Subject(s) - chemistry , glycopolymer , hydrazide , glycan , combinatorial chemistry , click chemistry , glycosidic bond , raft , lectin , polymerization , organic chemistry , biochemistry , polymer , glycoprotein , enzyme
In this paper, we report on a general synthetic strategy for the assembly of glycopolymers that capitalizes on the intrinsic reactivity of reducing glycans toward hydrazides to form stable cyclic N-glycosides. We developed a poly(acryloyl hydrazide) (PAH) scaffold to which we conjugated a variety of reducing glycans ranging in structure from simple mono- and disaccharides to considerably more complex human milk and blood oligosaccharides. The conjugation proceeds under mild conditions with excellent ligation efficiencies and in a stereoselective manner, providing glycopolymers with pendant glycans accommodated mostly in their cyclic beta-glycosidic form. Utilizing a biotin-terminated PAH scaffold prepared via RAFT polymerization, we quickly assembled a panel of glycopolymers that we microarrayed on streptavidin-coated glass. We then demonstrated that in these microarrays, the glycopolymer ligands bind lectins according to the structures of their pendant glycans. Importantly, glycopolymers containing biologically relevant branched oligosaccharides, such as sialyl Lewis(x), as well as sulfated glycosaminoglycan-like epitopes can be readily prepared using our methodology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom