z-logo
open-access-imgOpen Access
Dimeric Quinidine-Catalyzed Enantioselective Aminooxygenation of Oxindoles: An Organocatalytic Approach to 3-Hydroxyoxindole Derivatives
Author(s) -
Tommy Bui,
Nuno R. Candeias,
Carlos F. Barbas
Publication year - 2010
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja101032j
Subject(s) - chemistry , nitrosobenzene , enantioselective synthesis , organocatalysis , catalysis , combinatorial chemistry , quinidine , stereochemistry , organic chemistry , medicine , pharmacology
3-Hydroxyoxindoles are common structural motifs found in a vast array of natural and biologically active molecules. Most catalytic methods for the asymmetric syntheses of these compounds require the use of transition-metal catalysts. In contrast, alternative catalytic procedures involving organocatalysis are scarce. Herein we disclose a novel aminooxygenation of oxindoles with nitrosobenzene catalyzed by a newly designed quinidine dimer to afford the desired products in good yields with enantioselectivities up to 96%. These reactions allow one to construct a C-O bond at the C(3) position of oxindoles with the creation of an oxygen-containing tetrasubstituted chiral center and provide a new, general organocatalytic approach to the synthesis of 3-hydroxyoxindole derivatives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom