z-logo
open-access-imgOpen Access
On the Mechanism of Intramolecular Sensitization of Photocleavage of the 2-(2-Nitrophenyl)propoxycarbonyl (NPPOC) Protecting Group
Author(s) -
Dominik Wöll,
S. Laimgruber,
Marina Galetskaya,
Julia Smirnova,
Wolfgang Pfleiderer,
Björn Heinz,
Peter Gilch,
Ulrich E. Steiner
Publication year - 2007
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja072355p
Subject(s) - chemistry , chromophore , photochemistry , intramolecular force , moiety , thioxanthone , linker , stereochemistry , organic chemistry , polymerization , computer science , photopolymer , operating system , polymer
A spectroscopic study of a variety of covalently linked thioxanthone(TX)-linker-2-(2-nitrophenyl)propoxycarbonyl(NPPOC)-substrate conjugates is presented. Herein, the TX chromophore functions as an intramolecular sensitizer to the NPPOC moiety, a photolabile protecting group used in photolithographic DNA chip synthesis. The rate of electronic energy transfer between TX and NPPOC was quantified by means of stationary fluorescence as well as nanosecond and femtosecond time-resolved laser spectroscopy. A dual mechanism of triplet-triplet energy transfer has been observed comprising a slower mechanism involving the T1(pipi*) state of TX with linker-length-dependent time constants longer than 20 ns and a fast mechanism with linker-length-dependent time constants shorter than 3 ns. Evidence is provided that the latter mechanism is due to energy transfer from the T2(npi*) state which is in fast equilibrium with the fluorescent S1(pipi*) state. In the case of direct linkage between the aromatic rings of TX and NPPOC, the spectroscopic properties are indicative of one united chromophore which, however, still shows the typical NPPOC cleavage reaction triggered by intramolecular hydrogen atom transfer to the nitro group.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom