z-logo
open-access-imgOpen Access
Microporous Metal−Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties [J. Am. Chem. Soc. 2006, 128, 8904−8913].
Author(s) -
Mircea Dincă,
Anta F. Yu,
Jeffrey R. Long
Publication year - 2006
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja068019a
Subject(s) - notice , citation , computer science , hydrogen storage , social media , information retrieval , world wide web , library science , chemistry , hydrogen , organic chemistry , political science , law
The potential of tetrazolate-based ligands for forming metal-organic frameworks of utility in hydrogen storage is demonstrated with the use of 1,4-benzeneditetrazolate (BDT(2)(-)) to generate a series of robust, microporous materials. Reaction of H(2)BDT with MnCl(2).4H(2)O and Mn(NO(3))(2).4H(2)O in N,N-diethylformamide (DEF) produces the two-dimensional framework solids Mn(3)(BDT)(2)Cl(2)(DEF)(6) (1) and Mn(4)(BDT)(3)(NO(3))(2)(DEF)(6) (2), whereas reactions with hydrated salts of Mn(2+), Cu(2+), and Zn(2+) in a mixture of methanol and DMF afford the porous, three-dimensional framework solids Zn(3)(BDT)(3)(DMF)(4)(H(2)O)(2).3.5CH(3)OH (3), Mn(3)(BDT)(3)(DMF)(4)(H(2)O)(2).3CH(3)OH.2H(2)O.DMF (4), Mn(2)(BDT)Cl(2)(DMF)(2).1.5CH(3)OH.H(2)O (5), and Cu(BDT)(DMF).CH(3)OH.0.25DMF (6). It is shown that the method for desolvating such compounds can dramatically influence the ensuing gas sorption properties. When subjected to a mild evacuation procedure, compounds 3-6 exhibit permanent porosity, with BET surface areas in the range 200-640 m(2)/g. The desolvated forms of 3-5 store between 0.82 and 1.46 wt % H(2) at 77 K and 1 atm, with enthalpies of adsorption in the range 6.0-8.8 kJ/mol, among the highest so far reported for metal-organic frameworks. In addition, the desolvated form of 6 exhibits preferential adsorption of O(2) over H(2) and N(2), showing promise for gas separation and purification applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom