z-logo
open-access-imgOpen Access
Efficient Homogeneous Catalysis in the Reduction of CO2 to CO
Author(s) -
David S. Laitar,
Péter Müller,
Joseph P. Sadighi
Publication year - 2005
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja0566679
Subject(s) - chemistry , reagent , stoichiometry , alkoxide , catalysis , copper , homogeneous , ligand (biochemistry) , boron , medicinal chemistry , reduction (mathematics) , homogeneous catalysis , stereochemistry , organic chemistry , receptor , thermodynamics , biochemistry , physics , geometry , mathematics
The well-defined copper(I) boryl complex [(IPr)Cu(Bpin)] [where IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, and pin = pinacolate: 2,3-dimethyl-2,3-butanediolate] deoxygenates CO2 rapidly and quantitatively, affording CO and the borate complex [(IPr)Cu(OBpin)]. The boryl may be regenerated by treatment with the diboron compound pinB-Bpin, giving the stable byproduct pinB-O-Bpin. The use of a copper(I) alkoxide precatalyst and stoichiometric diboron reagent results in catalytic reduction of CO2, with high turnover numbers (1000 per Cu) and frequencies (100 per Cu in 1 h) depending on supporting ligand and reaction conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom