z-logo
open-access-imgOpen Access
General Deoxyribozyme-Catalyzed Synthesis of Native 3‘−5‘ RNA Linkages
Author(s) -
Whitney E. Purtha,
Rebecca L. Coppins,
Mary K. Smalley,
Scott Silverman
Publication year - 2005
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja0533702
Subject(s) - deoxyribozyme , chemistry , rna , nucleic acid , ribozyme , biochemistry , dna , cleavage (geology) , combinatorial chemistry , biology , gene , paleontology , fracture (geology)
An elusive goal for nucleic acid enzymology has been deoxyribozymes that ligate RNA rapidly, sequence-generally, with formation of native 3'-5' linkages, and in preparatively useful yield. Using in vitro selection, we have identified Mg2+- and Zn2+-dependent deoxyribozymes that simultaneously fulfill all four of these criteria. The new deoxyribozymes operate under practical incubation conditions and have modest RNA substrate sequence requirements, specifically D downward arrowRA for 9DB1 and A downward arrowR for 7DE5 (D = A, G, or U; R = A or G). These requirements are comparable to those of deoxyribozymes such as 10-23 and 8-17, which are already widely used as biochemical tools for RNA cleavage. We anticipate that the 9DB1 and 7DE5 deoxyribozymes will find immediate practical application for RNA ligation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom