High-Frequency and -Field EPR of a Pseudo-octahedral Complex of High-Spin Fe(II): Bis(2,2‘-bi-2-thiazoline)bis(isothiocyanato)iron(II)
Author(s) -
Andrew Ozarowski,
S. A. Zvyagin,
William M. Reiff,
Joshua Telser,
LouisClaude Brunel,
J. Krzystek
Publication year - 2004
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja048336m
Subject(s) - chemistry , electron paramagnetic resonance , octahedron , crystallography , thiazoline , spin (aerodynamics) , mössbauer spectroscopy , hamiltonian (control theory) , nuclear magnetic resonance , crystal structure , stereochemistry , physics , mathematical optimization , mathematics , thermodynamics
A pseudo-octahedral complex of high-spin Fe(II), bis(2,2'-bi-2-thiazoline)bis(isothiocyanato)iron(II), which has a cis-FeN'2N4 chromophore, has been investigated by high-frequency, high-field electron paramagnetic resonance (HFEPR). Complementary Mössbauer and DC magnetic susceptibility studies were also performed. HFEPR spectra of powder samples were recorded at frequencies up to 700 GHz and over a magnetic field range of 0-25 T. Analysis of the field-frequency data set yields the following set of spin Hamiltonian parameters for S = 2: D = +12.427(12) cm-1, E = +0.243(3) cm-1; gx = 2.147(3), gy = 2.166(3), gz = 2.01(1). The parameters are analyzed by use of a simple crystal-field model. This study represents the first precise determination by HFEPR of spin Hamiltonian parameters in six-coordinate high-spin Fe(II) and indicates the applicability of HFEPR to the study of high-spin Fe(II) in coordination complexes and biological model compounds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom