H−1H Dipolar Couplings Provide a Unique Probe of RNA Backbone Structure
Author(s) -
Emeric Miclet,
Erin O’Neil-Cabello,
Edward P. Nikonowicz,
David Live,
Ad Bax
Publication year - 2003
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja0388212
Subject(s) - chemistry , dipole , rna , chemical physics , organic chemistry , biochemistry , gene
A NMR method is described that permits simultaneous measurement of the geminal 2JH1H2 + 2DH1H2 splitting and the sum of the 1JCH1 + 1DCH1 + 1JCH2 + 1DCH2 couplings for methylene groups, where 2DH1H2 and 1DCH are residual dipolar couplings, occurring when molecules are weakly oriented relative to the magnetic field. By suppressing either the upfield or downfield half of the 1H-1H geminal doublet, the experiment yields improved resolution relative to regular two-dimensional 1H-13C correlation spectra, making it applicable to systems of considerable complexity. The method is demonstrated for measurement of all 2DH5'H5'' couplings in a 24-nucleotide 13C-enriched RNA stem loop structure, weakly aligned in liquid crystalline Pf1. The method is equally applicable to methylene groups in 13C-labeled proteins and to natural abundance samples of smaller molecules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom