z-logo
open-access-imgOpen Access
Role of Solvent in Excited-State Proton Transfer in Hypericin
Author(s) -
Feng Gai,
Michael J. Fehr,
Jacob W. Petrich
Publication year - 1994
Publication title -
the journal of physical chemistry
Language(s) - English
Resource type - Journals
eISSN - 1541-5740
pISSN - 0022-3654
DOI - 10.1021/j100085a015
Subject(s) - citation , icon , social media , computer science , altmetrics , information retrieval , world wide web , programming language
The excited-state proton transfer of hypericin is monitored by the rise time (-6-1 2 ps in the solvents investigated) of the component of stimulated emission corresponding to the formation of the long-lived (-5 ns) fluorescent tautomer. The assignment of this excited-state process to proton transfer has been verified by noting that a hypericin analog (mesonaphthobianthrone) lacking labile protons is not fluorescent unless its carbonyl groups are protonated. Recent experimental studies on other systems have suggested that three solvent properties play important roles in excited-state proton transfer: viscosity, hydrogen-bonding character, and dynamic solvation. We find that for hypericin, in a range of protic, aprotic, hydrogen-bonding, and nonhydrogen-bonding solvents in which the viscosity changes by a factor of 60 and the average solvation time changes by a factor of 100, the excited-state proton-transfer rate of hypericin is uncorrelated with these properties and varies not more than a factor of 2 (6-1 2 ps) at room temperature. The relative contribution of the bulk solvent polarity is considered, and the role of intramolecular vibrations of hypericin on the protontransfer rate is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom