Model-Based Closed-Loop Control of the Hydraulic Fracturing Process
Author(s) -
Qiuying Gu,
Karlene A. Hoo
Publication year - 2015
Publication title -
industrial and engineering chemistry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.878
H-Index - 221
eISSN - 1520-5045
pISSN - 0888-5885
DOI - 10.1021/ie5024782
Subject(s) - fracture (geology) , hydraulic fracturing , geology , petroleum engineering , mechanics , work (physics) , flow (mathematics) , multiphase flow , borehole , geotechnical engineering , engineering , mechanical engineering , physics
Hydraulic fracturing is a technique for enhancing the extraction of oil and gas from deep underground sources. Two important goals during this process are to achieve a final fracture with a predefined geometry and to have a proper distribution of proppant material within the fracture to keep the fracture walls open and allow oil and gas to flow to the surface. The hydraulic fracturing system contains limited real-time measurements of the actual fracture conditions largely due to the remote subterranean location where the fracture propagates. The fracturing process is characterized by multiphase transport, proppant settling, and coupling of fluid and fracture growth mechanics, all occurring within a time-varying spatial domain. These features present a challenge for the implementation of online feedback control of the fracture growth and proppant placement, and there are very few accounts of attempting this goal in the open literature. To address these issues, the current work proposes a control strategy t...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom