z-logo
open-access-imgOpen Access
Mixture Discriminant Monitoring: A Hybrid Method for Statistical Process Monitoring and Fault Diagnosis/Isolation
Author(s) -
Chien-Ching Huang,
Tao Chen,
Yuan Yao
Publication year - 2013
Publication title -
industrial and engineering chemistry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.878
H-Index - 221
eISSN - 1520-5045
pISSN - 0888-5885
DOI - 10.1021/ie400418c
Subject(s) - fault detection and isolation , computer science , linear discriminant analysis , process (computing) , benchmark (surveying) , statistical process control , artificial intelligence , pattern recognition (psychology) , fault (geology) , data mining , discriminant , machine learning , root cause , reliability engineering , engineering , geodesy , seismology , geology , actuator , geography , operating system
To better utilize historical process data from faulty operations, supervised learning methods, such as Fisher discriminant analysis (FDA), have been adopted in process monitoring. However, such methods can only separate known faults from normal operations, and they have no means to deal with unknown faults. In addition, most of these methods are not designed for handling non-Gaussian distributed data; however, non-Gaussianity is frequently observed in industrial processes. In this paper, a hybrid multivariate approach named mixture discriminant monitoring (MDM) was proposed, in which supervised learning and statistical process control (SPC) charting techniques are integrated. MDM is capable of solving both of the above problems simultaneously during online process monitoring. Then, for known faults, a root-cause diagnosis can be automatically achieved, while for unknown faults, abnormal variables can be isolated through missing variable analysis. MDM was used on the benchmark Tennessee Eastman (TE) process, and the results showed the capability of the proposed approach

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom