Granular Flow in Silo Discharge: Discrete Element Method Simulations and Model Assessment
Author(s) -
V. Vidyapati,
Shankar Subramaniam
Publication year - 2013
Publication title -
industrial and engineering chemistry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.878
H-Index - 221
eISSN - 1520-5045
pISSN - 0888-5885
DOI - 10.1021/ie303598e
Subject(s) - silo , discrete element method , mechanics , body orifice , rheology , granular material , discharge coefficient , materials science , particle (ecology) , volumetric flow rate , coefficient of restitution , flow (mathematics) , geotechnical engineering , physics , geology , thermodynamics , composite material , mechanical engineering , engineering , oceanography , nozzle
Discharge dynamics of granular particles from a flat-bottomed silo is studied using both continuum modeling and three-dimensional (3D) discrete element method (DEM) simulations. Using DEM, the influence of microscopic parameters (interparticle friction coefficient, particle–wall friction coefficient and particle coefficient of restitution) and system parameters (orifice width) on the discharge rate is quantified. The spatial extent of different regimes (quasi-static, intermediate and inertial) of granular rheology are quantified using a regime map previously established from DEM data of homogeneously sheared granular flow. It is shown that all three regimes of granular rheology coexist during silo discharge, and the intermediate regime plays a significant role in discharge dynamics. A quantitative comparison between results of continuum and DEM simulations is performed by computing discharge rates, solid velocities, and solid stresses for a three-dimensional (3D) flat-bottomed silo. It is found that the t...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom