Interpretation of Temperature Control for Ternary Distillation
Author(s) -
MinnTsong Lin,
ChengChing Yu,
Michael L. Luyben
Publication year - 2005
Publication title -
industrial and engineering chemistry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.878
H-Index - 221
eISSN - 1520-5045
pISSN - 0888-5885
DOI - 10.1021/ie050130m
Subject(s) - ternary operation , distillation , interpretation (philosophy) , process engineering , thermodynamics , temperature control , computer science , environmental science , chemistry , chromatography , engineering , programming language , physics
Even with recent advances in technology for on-line composition measurement, temperature remains the dominant control configuration in distillation columns for product purity. In controlling industrial ternary distillation columns, with a nonmonotonic composition profile for the intermediate boiler, significantly different closed-loop composition dynamics are observed when the temperature-control tray is above or below the intermediate boiler composition turning point (i.e., above or below the tray where the intermediate exhibits a maximum). In this work, the role of direct temperature control is interpreted in the composition space. First, the temperature isotherm is established in the triangular composition space and the process direction and control direction can be clearly distinguished. Then, a quantitative measure, called the traveling distance, for all tray compositions under a specific temperature-control configuration is defined. The traveling distance can be computed directly from process and lo...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom