z-logo
open-access-imgOpen Access
Synthesis, Structure, and Bonding in K12Au21Sn4. A Polar Intermetallic Compound with Dense Au20and Open AuSn4Layers
Author(s) -
Bin Li,
SungJin Kim,
Gordon J. Miller,
John D. Corbett
Publication year - 2009
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic901493j
Subject(s) - chemistry , intermetallic , crystallography , crystal structure , stereochemistry , alloy , organic chemistry
The new phase K(12)Au(21)Sn(4) has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) A, V = 1901.3(7) A(3), and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au(20)) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn(4)). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K(3)Au(5)In and Rb(2)Au(3)Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom