Authentic-Blue Phosphorescent Iridium(III) Complexes Bearing Both Hydride and Benzyl Diphenylphosphine; Control of the Emission Efficiency by Ligand Coordination Geometry
Author(s) -
Yuan-Chieh Chiu,
Chen-Huey Lin,
JuiYi Hung,
Yün Chi,
YiMing Cheng,
Kangwei Wang,
MinWen Chung,
GeneHsiang Lee,
PiTai Chou
Publication year - 2009
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic900607s
Subject(s) - chemistry , iridium , phosphorescence , diphenylphosphine , hydride , ligand (biochemistry) , bearing (navigation) , photochemistry , coordination geometry , phosphine , molecule , catalysis , organic chemistry , metal , biochemistry , physics , receptor , quantum mechanics , fluorescence , cartography , hydrogen bond , geography
Sequential treatment of IrCl(3) x nH(2)O with 2 equiv of benzyl diphenylphosphine (bdpH) and then 1 equiv of 3-trifluoromethyl-5-(2-pyridyl) pyrazole (fppzH) in 2-methoxyethanol gave formation to three isomeric complexes with formula [Ir(bdp)(fppz)(bdpH)H] (1-3). Their molecular structures were established by single crystal X-ray diffraction studies, showing existence of one monodentate phosphine bdpH, one terminal hydride, a cyclometalated bdp chelate, and a fppz chelate. Variation of the metal-ligand bond distances showed good agreement with those predicted by the trans effect. Raman spectroscopic analyses and the corresponding photophysical data are also recorded and compared. Among all isomers complex 1 showed the worst emission efficiency, while complexes 2 and 3 exhibited the greatest luminescent efficiency in solid state and in degassed CH(2)Cl(2) solution at room temperature, respectively. This structural relationship could be due to the simultaneously weakened hydride and the monodentate bdpH bonding that are destabilized by the trans-pyrazolate anion and cyclometalated benzyl group, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom