How the Surface Structure Determines the Properties of CuH
Author(s) -
Elliot L. Bennett,
Thomas Wilson,
P. J. Murphy,
Keith Refson,
Alex C. Han,
Silvia Imberti,
Samantha K. Callear,
Gregory A. Chass,
Stewart F. Parker
Publication year - 2015
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic5027009
Subject(s) - chemistry , aqueous solution , adsorption , nanoparticle , product (mathematics) , catalysis , particle (ecology) , yield (engineering) , combinatorial chemistry , chemical engineering , organic chemistry , metallurgy , oceanography , geometry , mathematics , materials science , geology , engineering
CuH is a material that appears in a wide diversity of circumstances ranging from catalysis to electrochemistry to organic synthesis. There are both aqueous and nonaqueous synthetic routes to CuH, each of which apparently leads to a different product. We developed synthetic methodologies that enable multigram quantities of CuH to be produced by both routes and characterized each product by a combination of spectroscopic, diffraction and computational methods. The results show that, while all methods for the synthesis of CuH result in the same bulk product, the synthetic path taken engenders differing surface properties. The different behaviors of CuH obtained by aqueous and nonaqueous routes can be ascribed to a combination of very different particle size and dissimilar surface termination, namely, bonded hydroxyls for the aqueous routes and a coordinated donor for the nonaqueous routes. This work provides a particularly clear example of how the nature of an adsorbed layer on a nanoparticle surface determines the properties.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom