Lanthanide Loading of Luminescent Multi-Tridentate Polymers under Thermodynamic Control
Author(s) -
Lucille Babel,
Thi Nhu Y Hoang,
Homayoun Nozary,
Jasmina Salamanca,
Laure Guénée,
Claude Piguet
Publication year - 2014
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic4030525
Subject(s) - chemistry , lanthanide , luminescence , polymer , polymer chemistry , inorganic chemistry , organic chemistry , ion , physics , optoelectronics
This work illustrates the use of basic statistical mechanics for rationalizing the loading of linear multitridentate polymers with trivalent lanthanides, Ln(III), and identifies the specific ionic sizes of europium and yttrium as promising candidates for the further design of organized heterometallic f–f′ materials. Using [Ln(hfac)3] (hfac = hexafluoroacetylacetonate) as lanthanide carriers, the thermodynamically controlled formation of Wolf type-II lanthanidopolymers [{Ln(hfac)3}m(L4)] is modeled with the help of two simple microscopic descriptors: (i) the intrinsic affinity of Ln(III) for the tridentate binding sites fN3(Ln) and (ii) the intermetallic interactions ΔE1–2(Ln,Ln) operating between two occupied adjacent sites. Selective complexation (fN3La << fN3Eu > fN3(Y)) modulated by anticooperative interactions (ΔE1–2(La,La) ≃ ΔE1–2(Eu,Eu) > ΔE1–2(Y,Y) ≈ 0) favors the fixation of Eu(III) in semiorganized lanthanidopolymers [{Eu(hfac)3}m(L4)] displaying exploitable light-downshifting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom