Evaluating the Identity and Diiron Core Transformations of a (μ-Oxo)diiron(III) Complex Supported by Electron-Rich Tris(pyridyl-2-methyl)amine Ligands
Author(s) -
Loi H.,
Genqiang Xue,
Lawrence Que,
Stephen J. Lippard
Publication year - 2012
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic202379b
Subject(s) - chemistry , reactivity (psychology) , acetonitrile , adduct , amine gas treating , medicinal chemistry , hydrogen peroxide , perchlorate , tris , deprotonation , stereochemistry , organic chemistry , medicine , ion , biochemistry , alternative medicine , pathology
The composition of a (μ-oxo)diiron(III) complex coordinated by tris[(3,5-dimethyl-4-methoxy)pyridyl-2-methyl]amine (R(3)TPA) ligands was investigated. Characterization using a variety of spectroscopic methods and X-ray crystallography indicated that the reaction of iron(III) perchlorate, sodium hydroxide, and R(3)TPA affords [Fe(2)(μ-O)(μ-OH)(R(3)TPA)(2)](ClO(4))(3) (2) rather than the previously reported species [Fe(2)(μ-O)(OH)(H(2)O)(R(3)TPA)(2)](ClO(4))(3) (1). Facile conversion of the (μ-oxo)(μ-hydroxo)diiron(III) core of 2 to the (μ-oxo)(hydroxo)(aqua)diiron(III) core of 1 occurs in the presence of water and at low temperature. When 2 is exposed to wet acetonitrile at room temperature, the CH(3)CN adduct is hydrolyzed to CH(3)COO(-), which forms the compound [Fe(2)(μ-O)(μ-CH(3)COO)(R(3)TPA)(2)](ClO(4))(3) (10). The identity of 10 was confirmed by comparison of its spectroscopic properties with those of an independently prepared sample. To evaluate whether or not 1 and 2 are capable of generating the diiron(IV) species [Fe(2)(μ-O)(OH)(O)(R(3)TPA)(2)](3+) (4), which has previously been generated as a synthetic model for high-valent diiron protein oxygenated intermediates, studies were performed to investigate their reactivity with hydrogen peroxide. Because 2 reacts rapidly with hydrogen peroxide in CH(3)CN but not in CH(3)CN/H(2)O, conditions that favor conversion to 1, complex 1 is not a likely precursor to 4. Compound 4 also forms in the reaction of 2 with H(2)O(2) in solvents lacking a nitrile, suggesting that hydrolysis of CH(3)CN is not involved in the H(2)O(2) activation reaction. These findings shed light on the formation of several diiron complexes of electron-rich R(3)TPA ligands and elaborate on conditions required to generate synthetic models of diiron(IV) protein intermediates with this ligand framework.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom