Synthesis of Iridium Pyridinyl N-Heterocyclic Carbene Complexes and Their Catalytic Activities on Reduction of Nitroarenes
Author(s) -
Chaoyu Wang,
ChingFeng Fu,
YiHong Liu,
ShieMing Peng,
ShiuhTzung Liu
Publication year - 2007
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic070330l
Subject(s) - chemistry , iridium , carbene , medicinal chemistry , catalysis , aniline , transmetalation , carbon monoxide , ligand (biochemistry) , acetonitrile , transfer hydrogenation , yield (engineering) , organic chemistry , biochemistry , receptor , materials science , ruthenium , metallurgy
Coordination of iridium(I) metal ions with a pyridinyl imidazol-2-ylidene ligand (pyNwedgeC-R) [R=Me, mesityl(2,4,6-trimethylphenyl)] that processes bulky substituents has been investigated. The iridium carbene complexes [(C-pyNwedgeC-R)IrCl(COD)] (COD=1,5-cyclooctadiene) are prepared via transmetalation from the corresponding silver carbene complexes. Upon the abstraction of chloride, the chelation of pyNwedgeC becomes feasible, resulting in the formation of [C,N-(pyNwedgeC-R)Ir(COD)](BF4) (4). The coordinated COD of complex 4 can be replaced by carbon monoxide to yield the corresponding carbonyl species [C,N-(pyNwedgeC-R)Ir(CO)2](BF4). The labile nature of the pyridinyl nitrogen donor is readily replaced by acetonitrile, as is evidenced by the NMR study. All iridium complexes show catalytic activity on the hydrogen-transfer reduction of carbonyl and nitro functionalities. By manipulation of the reaction conditions, the iridium-catalyzed reduction of nitroarenes can selectively provide aniline or azo compounds as the desired product.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom