Novel linear transition metal clusters of a heptadentate bis-beta-diketone ligand.
Author(s) -
Guillem Aromí,
Patrick Gamez,
J Krzystek,
Huub Kooijman,
Anthony L Spek,
Elizabeth J MacLean,
Simon J Teat,
Harriott Nowell
Publication year - 2007
Publication title -
inorganic chemistry
Language(s) - English
DOI - 10.1021/ic062075v.s003
The synthesis and the structure of the new potentially heptadentate ligand 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene (H5L) is described. The reaction in pyridine or DMF of this ligand with various M(AcO)2 salts (M = NiII, CoII, MnII) leads to very different products depending on the metal. Thus, the dinuclear complexes [M2(H3L)2(py)4] (M = NiII, 1; CoII, 2) or the linear zigzag tetranuclear clusters [Mn4(H2L)2(AcO)2(py)5] (3) and [Mn4(H2L)2(AcO)2(dmf)4] (4) have been synthesized and characterized crystallographically. Slow oxidation of complex 3 leads to the formation of the novel mixed-valence linear complex [Mn3(HL)2(py)6] (5), displaying an unprecedented asymmetric MnIIIMnIIIMnII topology. The coordination geometry of complexes 1 to 5 has been analyzed and discussed by means of continuous shape measures. Magnetic measurements of 3 and 5 demonstrate that the metals within these complexes weakly interact magnetically with coupling constants of J1 = -1.13 cm-1 and J2 = -0.43 cm-1 (S = 0) for complex 3 and J1 = -5.4 cm-1 and J2 = -0.4 cm-1 (S = 5/2) for complex 5 (using the H = -Sigma2JijSiSj convention). These results are consistent with X-band EPR measurements on these compounds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom