z-logo
open-access-imgOpen Access
En Route to the Formation of High-Efficiency, Osmium(II)-Based Phosphorescent Materials
Author(s) -
F. S. L. Hsu,
YungLiang Tung,
Yün Chi,
ChengChih Hsu,
YiMing Cheng,
MeiLin Ho,
PiTai Chou,
ShieMing Peng,
Arthur J. Carty
Publication year - 2006
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic061301y
Subject(s) - chemistry , osmium , phosphorescence , photochemistry , organic chemistry , ruthenium , catalysis , fluorescence , quantum mechanics , physics
Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom