z-logo
open-access-imgOpen Access
Behavior of Decabromodiphenyl Ether (BDE-209) in the Soil−Plant System: Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil
Author(s) -
Honglin Huang,
Shuzhen Zhang,
Peter Christie,
Sen Wang,
Mei Na Xie
Publication year - 2009
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es901860r
Subject(s) - decabromodiphenyl ether , chromosomal translocation , environmental chemistry , environmental science , chemistry , biochemistry , organic chemistry , fire retardant , gene
Deca-bromodiphenyl ether (BDE-209) is the major component of the commercial deca-BDE flame retardant. There is increasing concern over BDE-209 due to its increasing occurrence in the environment and in humans. In this study the behavior of BDE-209 in the soil-plant system was investigated. Accumulation of BDE-209 was observed in the roots and shoots of all the six plant species examined, namely ryegrass, alfalfa, pumpkin, summer squash, maize, and radish. Root uptake of BDE-209 was positively correlated with root lipid content (P < 0.001, R(2) = 0.81). The translocation factor (TF, C(shoot)/C(root)) of BDE-209 was inversely related to its concentration in roots. Nineteen lower brominated (di- to nona-) PBDEs were detected in the soil and plant samples and five hydroxylated congeners were detected in the plant samples, indicating debromination and hydroxylation of BDE-209 in the soil-plant system. Evidence of a relatively higher proportion of penta- through di-BDE congeners in plant tissues than in the soil indicates that there is further debromination of PBDEs within plants or low brominated PBDEs are more readily taken up by plants. A significant negative correlation between the residual BDE-209 concentration in soil and the soil microbial biomass measured as the total phospholipid fatty acids (PLFAs) (P < 0.05, R(2) = 0.74) suggests that microbial metabolism and degradation contribute to BDE-209 dissipation in soil. These results provide important information about the behavior of BDE-209 in the soil-plant system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom