z-logo
open-access-imgOpen Access
Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide
Author(s) -
Li Yang,
Chun Hu,
Yulun Nie,
Jiuhui Qu
Publication year - 2009
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es803253c
Subject(s) - chemistry , catalysis , fourier transform infrared spectroscopy , aqueous solution , mesoporous material , inorganic chemistry , attenuated total reflection , mesoporous silica , nuclear chemistry , manganese , reactivity (psychology) , ozone , infrared spectroscopy , chemical engineering , organic chemistry , medicine , alternative medicine , pathology , engineering
Catalytic ozonation of five pharmaceutical compounds (PhACs)-phenazone, ibuprofen, diphenhydramine, phenytoin, and diclofenac sodium in alumina-supported manganese oxide (MnOx) suspension was carried out with a semicontinuous laboratory reactor. MnOx supported by mesoporous alumina (MnOx/MA) was highly effective in mineralizing the PhACs in aqueous solution. Fourier transform infrared (FTIR) spectroscopy and in situ attenuated total reflection FTIR (ATR-FTIR) spectroscopy were used to examine the interaction of ozone with different catalysts undervarious conditions. The crucial active sites, surface oxide species at 1380 cm(-1), were formed by the interaction of ozone with Lewis acid sites on the alumina surface. New surface hydroxyl groups at 2915 and 2845 cm(-1) were produced by the interaction of the catalyst and ozone in aqueous suspension and became active sites in the presence of MnOx. The introduction of MnOx enhanced the formation and activation of surface hydroxyl groups, causing higher catalytic reactivity. On the basis of these findings, a reaction mechanism is proposed for the catalytic ozonation of PhACs in MnOx/MA suspension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom