Predicting Atrazine Levels in Water Utility Intake Water for MCL Compliance
Author(s) -
Elizabeth A. Pappas,
C. Huang
Publication year - 2008
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es800457v
Subject(s) - atrazine , environmental science , compliance (psychology) , water pollution , water quality , water intake , water utility , environmental engineering , environmental chemistry , waste management , water supply , water resource management , environmental health , chemistry , pesticide , engineering , medicine , biology , ecology , psychology , social psychology
To protect human health, atrazine concentrations in finished municipal drinking water must not exceed a maximum contaminant level (MCL) of 3 microg/L, as determined by a specific monitoring regime mandated by the United States Environmental Protection Agency. Atrazine levels were monitored along tile-fed drainage ditches draining to a major drinking water source and used to predict MCL exceedance frequencies of intake and finished drinking water. Water samples were collected daily at eight monitoring sites located at the outlets of subbasins draining 298-19 341 ha (736-47 794 ac). Flow-weighted average (FWA) atrazine concentrations ranged from 0.9 to 9.8 microg/L, and were above 3 microg/L for the majority of sites, including the largest site, which represents water quality at the intake of the local municipal water treatment plant. However, a relatively low percentage of samples near the water utility intake exceeding 3 microg/L atrazine (10.4%) made this problem difficult to detect. In order to have a 95% probability of detecting any intake sample exceeding 3 microg/L atrazine in a drainage system exceeding 3 microg/L atrazine on a FWA basis, sampling frequency would need to be every 7 days or more often during the second quarter when the potentials for field atrazine losses and temporal variability of atrazine concentrations are highest.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom