Field Sampling Method for Quantifying Odorants in Humid Environments
Author(s) -
Steven Trabue,
Kenwood Scoggin,
Hong Li,
Robert Burns,
Hongwei Xin
Publication year - 2008
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es7031407
Subject(s) - sampling (signal processing) , field (mathematics) , environmental science , environmental chemistry , biological system , chemistry , biology , computer science , mathematics , filter (signal processing) , computer vision , pure mathematics
Most air quality studies in agricultural environments use thermal desorption analysis for quantifying semivolatile organic compounds (SVOCs) associated with odor. The objective of this study was to develop a robust sampling technique for measuring SVOCs in humid environments. Test atmospheres were generated at ambient temperatures (23 +/- 1.5 degrees C) and 25, 50, and 80% relative humidity (RH). Sorbent material used included Tenax, graphitized carbon, and carbon molecular sieve (CMS). Sorbent tubes were challenged with 2, 4, 8, 12, and 24 L of air at various RHs. Sorbent tubes with CMS material performed poorly at both 50 and 80% RH dueto excessive sorption of water. Heating of CMS tubes during sampling or dry-purging of CMS tubes post sampling effectively reduced water sorption with heating of tubes being preferred due to the higher recovery and reproducibility. Tenaxtubes had breakthrough of the more volatile compounds and tended to form artifacts with increasing volumes of air sampled. Graphitized carbon sorbent tubes containing Carbopack X and Carbopack C performed best with quantitative recovery of all compounds at all RHs and sampling volumes tested. The graphitized carbon tubes were taken to the field for further testing. Field samples taken from inside swine feeding operations showed that butanoic acid, 4-methylphenol, 4-ethylphenol, indole, and 3-methylindole were the compounds detected most often above their odor threshold values. Field samples taken from a poultry facility demonstrated that butanoic acid, 3-methylbutanoic acid, and 4-methylphenol were the compounds above their odor threshold values detected most often, relative humidity, CAFO, VOC, SVOC, thermal desorption, swine, poultry, air quality, odor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom