Evaluating the Potential Efficacy of Mercury Total Maximum Daily Loads on Aqueous Methylmercury Levels in Four Coastal Watersheds
Author(s) -
Sarah E. Rothenberg,
Richard F. Ambrose,
Jennifer A. Jay
Publication year - 2008
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es702819f
Subject(s) - methylmercury , mercury (programming language) , estuary , environmental science , bay , environmental chemistry , hydrology (agriculture) , total maximum daily load , mercure , water quality , environmental engineering , chemistry , fishery , ecology , oceanography , bioaccumulation , geology , biology , analytical chemistry (journal) , geotechnical engineering , computer science , programming language
Of the approximately 780 U.S. EPA approved mercury total maximum daily loads (TMDLs), most specify a reduction in total mercury (Hg(T)) loads to reduce methylmercury levels in fish tissue, assuming a 1:1 correspondence. However, mercury methylation is more complex, and therefore, proposed load reductions may not be adequate. Using multiple regression with microlevel and macrolevel variables, the potential efficacy of mercury TMDLs on decreasing aqueous methylmercury levels was investigated in four coastal watersheds: Mugu Lagoon (CA), San Francisco Bay Estuary, Long Island Sound, and south Florida. Hg(T) and methylmercury levels were positively correlated in all watersheds except in Long Island Sound, where spatial differences explained over 40% of the variability in methylmercury levels. A mercury TMDL would be least effective in Long Island Sound due to spatial heterogeneity but most effective in south Florida, where the ratio between aqueous Hg(T) and methylmercury levels was close to 1 and the 95% confidence interval was narrow, indicating a probable reduction in aqueous methylmercury levels if Hg(T) loads were reduced.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom