z-logo
open-access-imgOpen Access
Bioaccumulation of Pharmaceuticals and Other Anthropogenic Waste Indicators in Earthworms from Agricultural Soil Amended With Biosolid or Swine Manure
Author(s) -
Chad A. Kinney,
Edward T. Furlong,
Dana W. Kolpin,
Mark R. Burkhardt,
Steven D. Zaugg,
Stephen L. Werner,
Joseph P. Bossio,
Mark J. Benotti
Publication year - 2008
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es702304c
Subject(s) - earthworm , biosolids , amendment , manure , bioaccumulation , environmental science , soil water , compost , environmental chemistry , eisenia andrei , agronomy , chemistry , environmental engineering , biology , soil science , political science , law
Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWls, reflecting the presence of human-use compounds. The swine manure contained 12 AWls, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWls. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWls present in waste material applied. There were 20 AWls detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 microg/kg), 25 AWls in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 microg/ kg), and 21 AWls in earthworms from Site 3 (five compounds exceeding concentrations of 1000 microg/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors (BAF) ranged from 0.05 (galaxolide) to 27 (triclosan). This study documents that when AWls are present in source materials that are land applied, such as biosolids and swine manure, AWls can be transferred to earthworms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom