Analysis of Japanese Radionuclide Monitoring Data of Food Before and After the Fukushima Nuclear Accident
Author(s) -
Stefan Merz,
Katsumi Shozugawa,
Georg Steinhäuser
Publication year - 2015
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es5057648
Subject(s) - fukushima nuclear accident , environmental science , radionuclide , contamination , food safety , radioactive contamination , toxicology , chemistry , food science , nuclear power plant , biology , physics , ecology , nuclear physics
In an unprecedented food monitoring campaign for radionuclides, the Japanese government took action to secure food safety after the Fukushima nuclear accident (Mar. 11, 2011). In this work we analyze a part of the immense data set, in particular radiocesium contaminations in food from the first year after the accident. Activity concentrations in vegetables peaked immediately after the campaign had commenced, but they decreased quickly, so that by early summer 2011 only a few samples exceeded the regulatory limits. Later, accumulating mushrooms and dried produce led to several exceedances of the limits again. Monitoring of meat started with significant delay, especially outside Fukushima prefecture. After a buildup period, contamination levels of meat peaked by July 2011 (beef). Levels then decreased quickly, but peaked again in September 2011, which was primarily due to boar meat (a known accumulator of radiocesium). Tap water was less contaminated; any restrictions for tap water were canceled by April 1, 2011. Pre-Fukushima (137)Cs and (90)Sr levels (resulting from atmospheric nuclear explosions) in food were typically lower than 0.5 Bq/kg, whereby meat was typically higher in (137)Cs and vegetarian produce was usually higher in (90)Sr. The correlation of background radiostrontium and radiocesium indicated that the regulatory assumption after the Fukushima accident of a maximum activity of (90)Sr being 10% of the respective (137)Cs concentrations may soon be at risk, as the (90)Sr/(137)Cs ratio increases with time. This should be taken into account for the current Japanese food policy as the current regulation will soon underestimate the (90)Sr content of Japanese foods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom