z-logo
open-access-imgOpen Access
Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in the United States
Author(s) -
Cassandra L. Thiel,
Matthew J. Eckelman,
Richard Guido,
Matthew H Huddleston,
Amy E. Landis,
Jodi D. Sherman,
Scott O. Shrake,
Noe Copley-Woods,
Melissa M. Bilec
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es504719g
Subject(s) - life cycle assessment , health care , environmental impact assessment , resource (disambiguation) , medicine , business , operations management , environmental science , engineering , production (economics) , computer science , ecology , computer network , biology , economics , macroeconomics , economic growth
The healthcare sector is a driver of economic growth in the U.S., with spending on healthcare in 2012 reaching $2.8 trillion, or 17% of the U.S. gross domestic product, but it is also a significant source of emissions that adversely impact environmental and public health. The current state of the healthcare industry offers significant opportunities for environmental efficiency improvements, potentially leading to reductions in costs, resource use, and waste without compromising patient care. However, limited research exists that can provide quantitative, sustainable solutions. The operating room is the most resource-intensive area of a hospital, and surgery is therefore an important focal point to understand healthcare-related emissions. Hybrid life cycle assessment (LCA) was used to quantify environmental emissions from four different surgical approaches (abdominal, vaginal, laparoscopic, and robotic) used in the second most common major procedure for women in the U.S., the hysterectomy. Data were collected from 62 cases of hysterectomy. Life cycle assessment results show that major sources of environmental emissions include the production of disposable materials and single-use surgical devices, energy used for heating, ventilation, and air conditioning, and anesthetic gases. By scientifically evaluating emissions, the healthcare industry can strategically optimize its transition to a more sustainable system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom