z-logo
open-access-imgOpen Access
Measurements of Selected Brominated Flame Retardants in Nursing Women: Implications for Human Exposure
Author(s) -
Simon Ningsun Zhou,
Angelina Buchar,
Shabana Siddique,
Larissa Takser,
Nadia Abdelouahab,
Jiping Zhu
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es5016839
Subject(s) - breast milk , environmental chemistry , chemistry , biochemistry
We have examined several emerging brominated flame retardants (BFRs) including 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-indane (OBIND), and decabromodiphenyl ethane (DBDPE) in paired human maternal serum (n = 102) and breast milk (n = 105) collected in 2008-2009 in the Sherbrooke region in Canada. Three legacy BFRs were also included in the study for comparison: decabromobiphenyl (BB-209), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), and 2,2',4,4',5,5'-hexabromodiphenyl ethers (BDE-153). TBB, BB-153, and BDE-153 had detection frequencies greater than 55% in both serum and milk samples. Their lipid weight (lw) adjusted median concentrations (ng g(-1) lw) in serum and milk were 1.6 and 0.41 for TBB, 0.48 and 0.31 for BB-153, and 1.5 and 4.4 for BDE-153, respectively. The detection frequencies for the other BFRs measured in serum and milk were 16.7% and 32.4% for TBPH, 3.9% and 0.0% for BTBPE, 2.0% and 0.0% for BB-209, 9.8% and 1.0% for OBIND, and 5.9% and 8.6% for DBDPE. The ratio of TBB over the sum of TBB and TBPH (fTBB) in serum (0.23) was lower than that in milk (0.46), indicating TBB has a larger tendency than TBPH to be redistributed from blood to milk. Overall, these data confirm the presence of non-PBDE BFRs in humans, and the need to better understand their sources, routes of exposure, and potential human health effects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom