z-logo
open-access-imgOpen Access
Historical Mercury Releases from Commercial Products: Global Environmental Implications
Author(s) -
Hannah M. Horowitz,
Daniel Jacob,
Helen M. Amos,
David G. Streets,
Elsie M. Sunderland
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es501337j
Subject(s) - mercury (programming language) , environmental science , biogeochemical cycle , incineration , environmental chemistry , waste management , chemistry , computer science , engineering , programming language
The intentional use of mercury (Hg) in products and processes ("commercial Hg") has contributed a large and previously unquantified anthropogenic source of Hg to the global environment over the industrial era, with major implications for Hg accumulation in environmental reservoirs. We present a global inventory of commercial Hg uses and releases to the atmosphere, water, soil, and landfills from 1850 to 2010. Previous inventories of anthropogenic Hg releases have focused almost exclusively on atmospheric emissions from "byproduct" sectors (e.g., fossil fuel combustion). Cumulative anthropogenic atmospheric Hg emissions since 1850 have recently been estimated at 215 Gg (only including commercial Hg releases from chlor-alkali production, waste incineration, and mining). We find that other commercial Hg uses and nonatmospheric releases from chlor-alkali and mining result in an additional 540 Gg of Hg released to the global environment since 1850 (air: 20%; water: 30%; soil: 30%; landfills: 20%). Some of this release has been sequestered in landfills and benthic sediments, but 310 Gg actively cycles among geochemical reservoirs and contributes to elevated present-day environmental Hg concentrations. Commercial Hg use peaked in 1970 and has declined sharply since. We use our inventory of historical environmental releases to force a global biogeochemical model that includes new estimates of the global burial in ocean margin sediments. Accounting for commercial Hg releases improves model consistency with observed atmospheric concentrations and associated historical trends.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom