Ecological Modeling for the Extrapolation of Ecotoxicological Effects Measured during in Situ Assays in Gammarus
Author(s) -
Romain Coulaud,
Olivier Geffard,
Amandine Coquillat,
H. Quéau,
Sandrine Charles,
Arnaud Chaumot
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es501126g
Subject(s) - gammarus , ecology , population , gammarus pulex , environmental science , biomonitoring , population model , watershed , biology , amphipoda , computer science , demography , crustacean , machine learning , sociology
Evaluating the effects of chemical contamination on populations and ecological communities still constitutes a challenging necessity in environmental management. However, the toxic effects of contaminants are commonly measured by means of organism-level responses. Linking such effects measures with ecological models is a promising way to determine population-level impacts. In this way, population models are currently increasingly used in predictive risk assessment procedures, but their use in environmental diagnostic framework remains limited due to their lack of ecological realism. The present study with the crustacean Gammarus fossarum, a sentinel species in freshwater monitoring, combines a dual field and laboratory experimental approach with a population modeling framework. In this way, we developed an ecologically relevant periodic matrix population model for Gammarus. This model allowed us to capture the population dynamics in the field, and to understand the particular pattern of demographic sensitivities induced by Gammarus life-history phenology. The model we developed provided a robust population-level assessment of in situ-based effects measures recorded during a biomonitoring program on a French watershed impacted by past mining activities. Thus, our study illustrates the potential of population modeling when seeking to decipher the role of environmental toxic contamination in ecological perturbations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom