z-logo
open-access-imgOpen Access
Levels and Distributions of Hexachlorobutadiene and Three Chlorobenzenes in Biosolids from Wastewater Treatment Plants and in Soils within and Surrounding a Chemical Plant in China
Author(s) -
Haiyan Zhang,
Yawei Wang,
Cheng Sun,
Miao Yu,
Yan Gao,
Thanh Wang,
Jiyan Liu,
Guibin Jiang
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es405171t
Subject(s) - biosolids , pollutant , environmental science , soil water , sewage treatment , environmental chemistry , wastewater , hexachlorobenzene , environmental engineering , soil pollutants , soil contamination , chemistry , ecology , biology , soil science
Although hexachlorobutadiene (HCBD) was recently proposed as a candidate persistent organic pollutant (POP) under the Stockholm Convention, information about its environmental levels and distributions is still very limited. In this work, HCBD was determined in the sewage sludge from 37 wastewater treatment plants (WWTPs) in 23 cities and 17 soils near a chemical plant in China. Three chlorobenzenes (CBs) (1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, and hexachlorobenzene) were simultaneously studied to help better understand the environmental behavior of HCBD. Concentrations of HCBD in sludge samples ranged from <0.03 to 74.3 ng/g dry weight (dw) with a median value of 0.30 ng/g dw, which was lower than those of the three CBs. Levels of HCBD were not correlated with capacity of the WWTPs and total organic carbon. For soils, high level of HCBD was found in the sample within the plant, with a rapid decreasing concentration trend with the increase of distance from the plant. It was suspected that releasing as a byproduct during manufacturing of chlorinated chemicals was the primary source of HCBD in the studied location. Further risk assessment indicated that the environmental risk of HCBD to soil organisms and the health risk to employees were very low through soil exposure within the plant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom