Joint Photomicrobial Process for the Degradation of the Insensitive Munition N-Guanylurea-dinitramide (FOX-12)
Author(s) -
Nancy N. Perreault,
Annamaria Halasz,
Sonia Thiboutot,
Guy Ampleman,
Jalal Hawari
Publication year - 2013
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es4006652
Subject(s) - chemistry , biodegradation , degradation (telecommunications) , environmental chemistry , contamination , organic chemistry , ecology , telecommunications , computer science , biology
N-Guanylurea-dinitramide (FOX-12) is a very insensitive energetic material intended to be used in the composition of next-generation insensitive munitions. To help predict the environmental behavior and fate of FOX-12, we conducted a study to determine its photodegradability and biodegradability. When dissolved in water, FOX-12, a guanylurea-dinitramide salt, also named GUDN, dissociated instantly to produce the dinitramide moiety and guanylurea, as demonstrated by high-performance liquid chromatography (HPLC) analysis. When an aqueous solution of FOX-12 was subjected to photolysis using a solar-simulated photoreactor, we found a rapid removal of the dinitramide with concurrent formation of N₂O, NO₂(-), and NO₃(-). The second component, guanylurea, was photostable. However, when FOX-12 was incubated aerobically with the soil isolate Variovorax strain VC1 and protected from light, the dinitramide component of FOX-12 was recalcitrant but guanylurea degraded effectively to ammonia, guanidine, and presumably CO₂. When FOX-12 was incubated with strain VC1 in the presence of light, both components of FOX-12 degraded, giving similar products to those described above. We concluded that the new insensitive explosive FOX-12 can be effectively degraded by a joint photomicrobial process and, therefore, should not cause persistent contamination of surface waters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom