Controls on Soluble Pu Concentrations in PuO2/Magnetite Suspensions
Author(s) -
Andrew R. Felmy,
Dean A. Moore,
Carolyn I. Pearce,
Steven D. Conradson,
Odeta Qafoku,
Edgar C. Buck,
Kevin M. Rosso,
Eugene S. Ilton
Publication year - 2012
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es3028956
Subject(s) - magnetite , aqueous solution , chemistry , magnetite nanoparticles , redox , nuclear chemistry , inorganic chemistry , nanoparticle , materials science , magnetic nanoparticles , metallurgy , nanotechnology
Time-dependent reduction of PuO(2)(am) was studied over a range of pH values in the presence of aqueous Fe(II) and magnetite (Fe(3)O(4)) nanoparticles. At early time frames (up to 56 days) very little aqueous Pu was mobilized from PuO(2)(am), even though measured pH and redox potentials, coupled to equilibrium thermodynamic modeling, indicated the potential for significant reduction of PuO(2)(am) to relatively soluble Pu(III). Introduction of Eu(III) or Nd(III) to the suspensions as competitive cations to displace possible sorbed Pu(III) resulted in the release of significant concentrations of aqueous Pu. However, the similarity of aqueous Pu concentrations that resulted from the introduction of Eu(III)/Nd(III) to suspensions with and without magnetite indicated that the Pu was solubilized from PuO(2)(am), not from magnetite.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom