z-logo
open-access-imgOpen Access
Role of Vegetation in Enhancing Radon Concentration and Ion Production in the Atmosphere.
Author(s) -
E.R. Jayaratne,
Xuan Ling,
Lidia Morawska
Publication year - 2011
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es201152g
Subject(s) - radon , atmosphere (unit) , environmental science , atmospheric sciences , cosmic ray , vegetation (pathology) , transpiration , atmospheric chemistry , aerosol , environmental chemistry , chemistry , meteorology , physics , ozone , photosynthesis , nuclear physics , medicine , biochemistry , pathology
The role of ions in the production of atmospheric particles has gained wide interest due to their profound impact on climate. Away from anthropogenic sources, molecules are ionized by alpha radiation from radon exhaled from the ground and cosmic γ radiation from space. These molecular ions quickly form into "cluster ions", typically smaller than about 1.5 nm. Using our measurements and the published literature, we present evidence to show that cluster ion concentrations in forest areas are consistently higher than outside. Owing to the low range of alpha particles, radon present deep in the ground cannot directly contribute to the measured cluster ion concentrations. We propose an additional mechanism whereby radon, which is water-soluble, is brought up by trees and plants through the uptake of groundwater and released into the atmosphere by transpiration. We estimate that, in a forest comprising eucalyptus trees spaced 4 m apart, trees may account for up to 37% of the radon that is released from the ground during the middle of the day when transpiration rates are high. The corresponding percentage on an annual basis is 4.1%. Considering that 24% of the earth's land area is still covered in forests; these findings have potentially important implications for atmospheric aerosol formation and climate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom