z-logo
open-access-imgOpen Access
Heavy Metal Contents of Road-Deposited Sediment along the Urban–Rural Gradient around Beijing and its Potential Contribution to Runoff Pollution
Author(s) -
Hongtao Zhao,
Xuyong Li,
Xiaomei Wang
Publication year - 2011
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es2003233
Subject(s) - surface runoff , beijing , pollution , environmental science , first flush , sediment , hydrology (agriculture) , urban runoff , metropolitan area , environmental engineering , geography , stormwater , geology , ecology , china , geotechnical engineering , geomorphology , archaeology , biology
Understanding the contribution of road-deposited sediment (RDS) and its washoff process is essential for controlling urban runoff pollution. Ninety-seven RDS samples were collected along the urban-suburban-rural gradient from areas of five administrative units in the Beijing metropolitan region, including central urban (UCA), urban village (UVA), central suburban county (CSA), rural town (RTA), and rural village (RVA) areas. RDS washoff was evaluated with different particle sizes using a rainfall simulator. Heavy metal elements (i.e., Cr, Cu, Ni, Pb, and Zn) were estimated in both RDS and runoff samples. The RDS mass per unit area increased in the order UCA (21 ± 24 g/m(2)) ≈ CSA (20 ± 16 g/m(2)) < RTA (59 ± 63 g/m(2)) < RVA (147 ± 112 g/m(2)) ≈ UVA (147 ± 198 g/m(2)). Compared to RDS from the other administrative units, RDS from the UCA and CSA had higher metal concentrations and higher proportions of smaller particles, whereas that from the RVA and UVA had larger quantities of metals per unit area. UCA and CSA had lower potential runoff pollution contributions per unit area. Our findings imply that controlling the first flush in the UCA and CSA, and improving existing street cleaning methods and road surface conditions in the TRA, UVA, and RVA will be appropriate strategies for controlling runoff pollution from RDS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom