Preliminary Estimates of Nanoparticle Number Emissions from Road Vehicles in Megacity Delhi and Associated Health Impacts
Author(s) -
Prashant Kumar,
Bhola Ram Gurjar,
Ajay Singh Nagpure,
Roy M. Harrison
Publication year - 2011
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es2003183
Subject(s) - megacity , environmental science , new delhi , environmental health , mega , environmental engineering , transport engineering , geography , engineering , medicine , economics , economy , archaeology , physics , metropolitan area , astronomy
Rapid urbanisation in developing megacities like Delhi has resulted in an increased number of road vehicles and hence total particle number (ToN) emissions. For the first time, this study presents preliminary estimates of ToN emissions from road vehicles, roadside and ambient ToN concentrations, and exposure related excess deaths in Delhi in current and two future scenarios; business as usual (BAU) and best estimate scenario (BES). Annual ToN emissions are estimated as 1.37 × 10(25) for 2010 which are expected to increase by ∼4 times in 2030-BAU, but to decrease by ∼18 times in 2030-BES. Such reduction is anticipated due to a larger number of compressed natural gas driven vehicles and assumed retrofitting of diesel particulate filters to all diesel vehicles by 2020. Heavy duty vehicles emit the majority (∼65%) of ToN for only ∼4% of total vehicle kilometres traveled in 2010. Their contribution remains dominant under both scenarios in 2030, clearly requiring major mitigation efforts. Roadside and ambient ToN concentrations were up to a factor of 30 and 3 higher to those found in respective European environments. Exposure to ambient ToN concentrations resulted in ∼508, 1888, and 31 deaths per million people in 2010, 2030-BAU and 2030-BES, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom