z-logo
open-access-imgOpen Access
Environmental Impacts of the Coal Ash Spill in Kingston, Tennessee: An 18-Month Survey
Author(s) -
Laura Ruhl,
Avner Vengosh,
Gary S. Dwyer,
Heileen HsuKim,
Amrika Deonarine
Publication year - 2010
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es1026739
Subject(s) - environmental science , water quality , leaching (pedology) , coal , coal combustion products , arsenic , environmental chemistry , effluent , anoxic waters , fly ash , water pollution , pollution , surface water , environmental engineering , waste management , chemistry , soil water , ecology , organic chemistry , biology , soil science , engineering
An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom