z-logo
open-access-imgOpen Access
An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic
Author(s) -
Anne L. Soerensen,
Elsie M. Sunderland,
Christopher D. Holmes,
Daniel J. Jacob,
Robert M. Yantosca,
Henrik Skov,
Jesper H. Christensen,
Sarah A. Strode,
Robert P. Mason
Publication year - 2010
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es102032g
Subject(s) - biogeochemical cycle , mercury (programming language) , sink (geography) , environmental science , surface water , scavenging , environmental chemistry , oceanography , atmospheric sciences , chemistry , geology , biochemistry , cartography , antioxidant , environmental engineering , computer science , programming language , geography
We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg⁰/Hg(II) redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y⁻¹, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom