z-logo
open-access-imgOpen Access
Analysis of Pharmaceuticals in Water by Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry
Author(s) -
Brett J. Vanderford,
Shane A. Snyder
Publication year - 2006
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es0613198
Subject(s) - isotope dilution , chromatography , chemistry , mass spectrometry , liquid chromatography–mass spectrometry , tandem mass spectrometry , tandem , environmental chemistry , materials science , composite material
A method has been developed for the trace analysis of 15 pharmaceuticals, four metabolites of pharmaceuticals, three potential endocrine disruptors, and one personal care product in various waters. The method employs solid-phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC-MS/MS), using electrospray ionization (ESI) in both positive and negative modes. Unlike many previous LC-MS/MS methods, which suffer from matrix suppression, this method uses isotope dilution for each compound to correct for matrix suppression, as well as SPE losses and instrument variability. The method was tested in five matrices, and results indicate that the method is very robust. Matrix spike recoveries for all compounds were between 88 and 106% for wastewater influent, 85 and 108% for wastewater effluent, 72 and 105% for surface water impacted by wastewater, 96 and 113% for surface water, and 91 and 116% for drinking water. The method reporting limits for all compounds were between 0.25 and 1.0 ng/L, based on 500 mL of sample extracted and a final extract volume of 500 microL. Occurrence of the compounds in all five matrices is also reported.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom