z-logo
open-access-imgOpen Access
Increase in Rice Grain Arsenic for Regions of Bangladesh Irrigating Paddies with Elevated Arsenic in Groundwaters
Author(s) -
Paul N. Williams,
MR Islam,
Eureka Adomako,
Andrea Raab,
Sk Arafat Hossain,
YongGuan Zhu,
Jörg Feldmann,
Andrew A. Meharg
Publication year - 2006
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es060222i
Subject(s) - arsenic , arsenate , arsenite , arsenic contamination of groundwater , toxicology , environmental chemistry , chemistry , zoology , biology , organic chemistry
Concern has been raised by Bangladeshi and international scientists about elevated levels of arsenic in Bengali food, particularly in rice grain. This is the first inclusive food market-basket survey from Bangladesh, which addresses the speciation and concentration of arsenic in rice, vegetables, pulses, and spices. Three hundred thirty aman and boro rice, 94 vegetables, and 50 pulse and spice samples were analyzed for total arsenic, using inductivity coupled plasma mass spectrometry (ICP-MS). The districts with the highest mean arsenic rice grain levels were all from southwestern Bangladesh: Faridpur (boro) 0.51 > Satkhira (boro) 0.38 > Satkhira (aman) 0.36 > Chuadanga (boro) 0.32 > Meherpur (boro) 0.29 microg As g(-1). The vast majority of food ingested arsenic in Bangladesh diets was found to be inorganic; with the predominant species detected in Bangladesh rice being arsenite (AsIII) or arsenate (AsV) with dimethyl arsinic acid (DMAV) being a minor component. Vegetables, pulses, and spices are less important to total arsenic intake than water and rice. Predicted inorganic arsenic intake from rice is modeled with the equivalent intake from drinking water for a typical Bangladesh diet. Daily consumption of rice with a total arsenic level of 0.08 microg As g(-1) would be equivalent to a drinking water arsenic level of 10 microg L(-1).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom