Fate and Effect of Zinc from Tire Debris in Soil
Author(s) -
Erik Smolders,
Fien Degryse
Publication year - 2002
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es025567p
Subject(s) - soil water , debris , nitrification , environmental chemistry , leaching (pedology) , environmental science , zinc , soil contamination , chemistry , environmental engineering , soil science , nitrogen , geology , oceanography , organic chemistry
Tire debris contains significant quantities of zinc (Zn), and there is concern about the diffuse Zn contamination of soils from tire wear. An experiment was set up to quantify the fate and effect of Zn from tire debris in soil. Two different soils were mixed with the <100-microm fraction of car and truck tire debris (25 g kg(-1) soil) or zinc sulfate (ZnSO4) as a reference. Soils were transferred to soil columns with free drainage and placed outdoors for 11 months. Leachates of the tire debris amended soils did not contain significantly (P>0.05) more Zn than control soils except for a 3-fold increase in one soil amended with cartire debris. The increase in Zn leaching due to tire debris was only 3% of the corresponding increase in the ZnSO4 treatment at the same total Zn in soil. Tire debris application increased the soil nitrification potential, whereas ZnSO4 application, at corresponding or smaller total Zn concentration, decreased nitrification potential. An increase in soil pH was observed in all soils treated with tire debris and explains the increased nitrification potential. About 10-40% of the Zn from tire debris was isotopically exchangeable in soil sampled after 1 year weathering. It is concluded that a significant fraction of Zn is released from the rubber matrix within 1 year, but the parallel increase in soil pH limits the mobilization of Zn in soil.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom