Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants
Author(s) -
Maria del Mar Cortada Mut,
L. Nørskov,
Flemming Frandsen,
Peter Glarborg,
Kim DamJohansen
Publication year - 2015
Publication title -
energy and fuels
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.861
H-Index - 186
eISSN - 1520-5029
pISSN - 0887-0624
DOI - 10.1021/ef502633u
Subject(s) - combustion , cement , environmental science , circulation (fluid dynamics) , waste management , alternative fuels , chemistry , petroleum engineering , environmental chemistry , biochemical engineering , materials science , metallurgy , engineering , organic chemistry , aerospace engineering
Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant is important, because a high internal circulation affects the process stability and operation through formation of...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom