z-logo
open-access-imgOpen Access
Mass transfer between phases
Author(s) -
John J. McKetta
Publication year - 1959
Publication title -
journal of chemical education
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.499
H-Index - 84
eISSN - 1938-1328
pISSN - 0021-9584
DOI - 10.1021/ed036p585.3
Subject(s) - citation , icon , altmetrics , computer science , social media , information retrieval , world wide web , library science , programming language
We consider the mass transfer of solute A from one fluid phase by convection and then through a second fluid phase by convection. For example, the solute may diffuse through a gas phase and then diffuse through and be absorbed in an adjacent and immiscible liquid phase. This occurs in the case of absorption of ammonia from air by water. The two phases are in direct contact with each other, such as in a packed, tray, or spray-type tower, and the interfacial area between the phases is usually not well defined. In two-phase mass transfer, a concentration gradient will exist in each phase, causing mass transfer to occur. At the interface between the two fluid phases, equilibrium exists in most cases. In such cases, equilibrium relations, e.g. Henry’s law and equilibrium distribution coefficients, are important to determine concentration profiles for predicting rates of mass transfer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom